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flows in economic markets. 1In some instances the partitioning rule is

-m implicit: if N is a point process in which each point has one of several
attributes, then the numbers of points with these attributes form a
partition of N.

In this paper, we present multivariate Poisson and compound Poisson
2 :{, limit theorems for several partitions. These are weak convergence
i results for point processes in the setting described in Kallenberg
‘ » (1975). We also give bounds on the total- variation distance between the
t partitions and their limits. Related Poisson approximations were
developed by Hodges and Le Cam (1960), Le Cam (1960), Freedman (1974),
ii E. Serfling (1975), Brown (1983) and Serfozo (1985). 1In particular, we

[ . discuss partitions with point assignments that are independent (Section

2), Markovian (Section 3) and syncronous (Section 4). Some of the

- partitions (Section 4) comnverge to multivariate infinitely divisible

| processes with independent increments. We conclude by showing (Section

' 57‘1hat the asymptotic behavior of a partition, under mild conditions, is

not affected by time delays in the assignments. This is why time delays

do not appear in the previous results,

2. Partitions With Independent Point Assignments

. In this section, we study the asymptotic behavior of the following

L.~ ;} partition. Let N = {N(t); t > 0} be a point process on R+ with points at

- ] the times Tl < T2 < +«s Suppose N is partitioned by the rule that if a
4 . point of N appears at time t, then it is assigned instantaneously to
subprocess j with probability pj(t), independently of everything else,
where Z;_lpj(c) =1, t > 0. Let Xk denote the subprocess number to which
i the point at Tk is assigned. Under our assignment rule,

P(X, = lek =t X, T, & ¢# K) = pj(t:), for each j, k, t.

z’
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- t 1
-~ The resulting partition (Nl, NZ"") is given by
- 1 g
N.(t) = (X, = j)I(T, < t), t >0,
s 3 k k .
k=1
:? where I(A) is the indicator random variable of the event A.

We will consider the behavior of the partition as pj(t) tends to

zero., To this end, we assume that p.(t) depends on n and denote it by
To thi d h j( ) d d dd it b

- pnj(t). We consider the normalized partition
. N (£)i= (N_(£), N_(£),..0)i= (N (a t), Ni(a £),..0), € >0
) ~n - nl [ Anz ’... . l n 1) zan ’.0. y 9
. which is the original partition with the time scale changed so that the
i; constant a is the new time unit. We assume a + = Here is a Poisson
i
limit theorem for En'
- D
- Theorem 2.1. Suppose N(t)/t + A, a positive constant, and, for each j,

there is a measurable function r,: R, + R, such that

. j + +

- 1lim a p ,(a_t) = r (t), uniformly on finite intervals.
new N nj ' n 3

Then En 2 N, where N = (Nl’NZ"") is a vector of independent Poisson

— processes with respective intensities Arl,ArZ,...

Comments 2.2. Although an,an,... are generally dependent, their limits
N1'N2"" are independent. We have assumed, for simplicity, that the

original process N does not depend on n. Theorem 2.1 also applies,

(n)

however, when N is a function N of n such that

n D
N( )(tn)/tn % XAas n +» o, for each LINE
or, equivalently, that Tin)/kn 2 A-l for each kn + o,

. n

<. Proof. To prove En ? N, it suffices to show that the Laplace functional

of En converges to that of E. That is, for each J » 1 and continuous

. - . - - - - g » - - - . W C ™ L] - - . - - I\"‘. '.- te T T a '.- "_- '_- ‘. - R - -
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where the supremum is over all measurable sets. When X and Y are
discrete with densities f and g, respectively, then this becomes

d(x,Y) = (1/2) Y]£(x) - g(x)
X

Corollary 2.3. Suppose pnj(t) = pnj’ independent of t, and N has
stationary increments with finite A:= EN(1) and az:s Var N(1). Let

J J
qn = Zj-—-lpnj’ and En = (an,oo',NnJ)o If z'n = (znl,ooo,ZnJ) is a vector

of independent Poisson random variables with EZn = txanpn , then

3

J 2
d(gn(t), gn) < txanqn, t » 0.

3

If 2 = (zl,...,zJ) is a vector of independent Poisson random variables

~

with EZj = tla, then
d(NJ(t) Z) € tia qz + q olta_  + txla q. - al t » 0.
~n ? ~ n'n n n n'n !

Proof. This is a special case of Corollary 4.3 below with ;nk =q_,

n
J
d(gnk,y) = 0, ENn(t) = Aant, and

N (t)

Elkzl Snk - tia] = Elqu(ant) - tial

< qanarN(ant) + txianqn - a

3. Partitions With Markovian Point Assignments

Let N = {N(t); t > 0} be a point process on R '-ith points at

Tl < TZ € ... Suppose that N is partitioned by the rule that {ts point

at Tk is assigned instantaneously to subprocess number Xk. The resulting
partition is (NI, N;,...) is given by

t pog
N.(t) = § I(x = (T, < t), t>0,]=1,2,...
j L T K

We assume that the assignment process xo,xl,xz,... is a stationary Markov

~
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chain with state space {1,2,...}, transition probabilities pij’ and
distribution LR P(Xk = i), 1In this section, we study the asymptotic
behavior of this partition as the wi's tend to zero.

Assume that the partition depends on n and consider the finite

segment
En(t):= (an(t),...,NnJ(t)):s (N{(ant),...,N;(ant)), t » 0,

with time unit a = [2;=1w (1 -p j)]-l and J @ fixed., The form of a,

h| 3
and the need for finite J emanates from our analysis.

We will assume that p1J depends on n such that

(3.1) sup p1j +0 as n+x for each j =1,...,J.
i

This implies that "j + 0asn+ » for each j = 1,...,J, and hence a * o
Another consequence is that
J
q = ¥ Pyj = Pyg * 0 as n + =,

i=1
This :H 1s the probability that the point assignment changes from
subprocess i to any other subprocess j # i in {1,...,J}. Keep in mind
that pij’ LI and 9, depend on n, but we are not appending aa n to them,

Next, we assume that there are probabilities rl,...,rJ sunming to

one such that

(3.2) s:p (p1j - qirj)I(q1 >0)+0 for each j=1,...,J,
and that
(3.3) s;p 7,(1 - £y = 0)/ % T * 0 asn e
R T S 5 oo s Ty S N N T R e




We also assume, for simplicity, that N has stationary increments with

finite A:= EN(1l) and 02:= VarN(1l); that pjj,r A, 0 are independent of n;

j’

and that O < pjj <1, r, > 0, L >0 for each i and j=1,...,J. Let

b
J
Sn:= 1/2[121rij21|p1j1(q1 > 0)/qi - rjl + Eni(l - ri)I(q1 = 0)].
j#i

And let N(t):= (Nl(t),...,NJ(t)) be a vector of independent compound

Poisson processes such that the atoms of N, appear at the rate Arj and

h|
.= p¥l
R b

is a Poisson process.

their size has the geometric density g .(2) (1-p j), £ >1. Note

3

that when pjj = 0, then Nj

Theorem 3.1. If {Xk} is independent of N, then

J
2
(3.4) d(N_(t),N(t)) < 321"3(1 =By Tt (8 + izniqg

1 , 172
+ [ta "(o-}) + tha_ gniqi], t » 0.

If (3.1) - (3.3) hold, then the right-hand side of (3.4) converges to

D
zero as n + », If N(t)/t + A as t + «» and, for each J, (3.1) - (3.3)

hold and
(3.5) 1lim P(X[ma ;= j]Xo = 1)/1:j =1, for eachm >1, j=1,...,J,
n-+»x n

~

then N PN.
~n
Comments Assumptions (3.1) - (3.3) are not used for the first assertion.
The inequality (3.4) implies that the subprocesses an""’NnJ are
approximately independent Poisson or compound Poisson processes when the
right-hand side of (3.4) is near zero. Note that the independence of
{xk} and N 18 invoked for (3.4) but not for the other assertions; this

independence can be relaxed as in Theorem 4.4. Theorem 3.1 also applies

when N is dependent on n; the assumption N(t)/t + X would have to be

modified as in Comments 2.2.
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.- Consider the last term in (3.6). Let g be the probability density

- on {0,1,...}°° defined by

‘l g(!,g_j) = rjgj(l), 2=1,2,...

.1 where 45 is the J-dimensional unit vector with a one in the j-th

<. component and zeros elsewhere. Applying Theorem 1 (expression (1.5)) in
Serfozo (1985), we have

N(ant) N(ant)

(3.7)  dg, M) SE ] [ph+ d(f,e)] +E| ]

_ - A,
- k=1 k=1

Py
where

P = Pl * g|xo,...,xk_1) = 12 (X, ;= Dqy

-y

fk(lg_j):ﬂ P(L, = lexo,...,xk_l,x:k # 0)
= ¥ I(X,_. = 1)(p,./9)I(q, > Og (D, j=1,...,J,
151%4 k-1 i3 %1 i j
J ©o

d(f = (1/2 f.(fu.) - a)l.
B (f,,8):= (1/2) 121 zzll () - g |

To evaluate the right-hand side of (3.7), first note that

2 2 2
Ep, = E[] I(X,_; = 1)qj] = § ma)
i

. Ed(f, ,8) = 6_.

Since N has stationary increments and is independent of the stationary

e e e " Y. C. e . e . . -
- - ” » - .~ - - - -
AT A s R N -
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Markov chain {Xk}’ then
N(ant)
(3.8) E[ k=21 P ] = EN(a _t)Ep, = it,
N(a t)
n
(3.9) E[ § (p2+ d(f ,g))] = M t[6 +  m.q2]
¢ k k*8 ntn g 111>

k=1

and, by (3.8) and Schwarz's

inequality we have

N(a t)
n N(a_t)
(3.10) El I b - a| <(var [0 p1/?
k=1 k=1

= [EN(ant)Varp1 + (E];)l)ZVarI\I(ant:)]1/2

2.1/2
i]'

-1
[ta "(o = ) + tha iz .9

Then using (3.9) and (3.10) in (3.7), combined with (3.6), yields the

desired inequality (3.4).
The second assertion of Theorem 3.1 is true since one can show that
(3.2) and (3.3) imply ansn + 0, and that (3.1) implies

2
may < )

a_ |
ny i

2
may/ % "9y * 0.

To prove the third assertion, consider the multivariate process

[a t]

) (I(X,=1),...,I(X, =0)), t >0,

Y (t) =
n k=1

1
where [r] denotes the integer part of r. Let N denote the process N

with A = 1. The first two assertions apply to Zn with N(t) = [t], A =1

and 0 = 0. Thus !n(t) Q g}(t) for each t. Since {Xk} is stationary and

D
gl has stationary increments, then we have Xn(t) - Xn(s) +> u}(t) - ﬁ}(s)




™

[

"
o . - -
L AN E AP

v e

RO

. e T, .

-l Ty ———" T T ———Y Ty

12

In the preceding sections, the partitions converge to vectors of
independent processes. But here, the syncronous point assignments lead
to the convergence of Nn to vectors of dependent processes. These

limiting processes are as follows. Suppose N = (Nl,N ) is a

gseee
multivariate infinitely divisible point process with independent

increments and Laplace functional

J J
Eexp {- z IR fj(t)Nj(dt)} = exp{-f Z[l - exp(- Z m_f (t))]u(m x dt) },

=1+ R, m j=1 41

where p is the canonical measure on {0,1,...}m X R+ that satisfies

J
(4.1) Y{1 - exp(- )
m =1

~

m)lum x [0,t]) < %, & >0.

This is a multivariate analogoue of the point processes in Chapter 7 of
Kallenberg (1975), or in Kerstan, Matthes and Mecke (1978). When

u(m x dt) = f£(m)A(dt), then N is a compound Poisson process whose atom
locations in R+ are Poisson with intensity measure A and its vector-valued
atom sizes have the density f; we simply say that N is multivariate
compound Poisson{A,f). in case f 1Is concentrated on {O,I}m, then N is
multivariate Poisson with intensity A. In either case, the Nl'N2’°" are
(m

independent when u(m x dt) = le(% = x dt), where HpsHyseoe

myagduy(my

are measures on {0,1,...} x R, -

For the following results, we assume that the parent process N and

the partition depend on n, and we let Tin)denote Tk and Min):=
(Mkl’MkZ,...).
Theorem 4.1. Suppose that
D
n
(4.2) Tl((n)/kn + 1, for each kn + w
(n)

,g(n),... are independent and satisfy

and that ﬁl 2

iR S
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(4.3) lim max P((Mig),...,Mig)) #0) =0 for each J,m.
n+w k<man

Then En converges in distribution to some E if and only if there is a
measure u, as above, that satisfies (4.1) and is such that

[a t]
(n)
(4.4) m ] PO =m) = u(m x (s,t])

n+w k=[ans]

for each s < t with pu(m x {s}) = u(m x {t}) = 0. In this case, the
multivariate process N is infinitely divisible with independent
increments and canonical measure yu.

Proof. Define

(n) (n) (n)

v (t):= sl T ™ <a ), g0 Vi < a0

k

H(£5 (M (£), M,y (8),00)em ] £Mey, 5o,

Then we can write Nnj(t) = th(yn(t)), t » 0. Assumption (4.2) implies
D
that Y, > Y where y(t) = t, t » 0. Thus, by Lemma 3.2, the statement

Nn 2 N is equivalent to ﬁn 2 N. In addition, note that ﬁn = 2 E(n)

~ ~ ~k ’

where iin), Eén),... are independent and satisfy, by (4.3),

max PCCEST(£),00 0, E(E)) # 0)
k

= max P((Mi;),...,Mig)

k<ta
n

) #0) 0 as n + «,

Now, if (4.4) holds, then by a multivariate point process version of
Theorem 7.2 of Kallenberg (1975), we know that gn 2 N, where N is as
described in the last assertion of Theorem 4.1. Thus En P N.

Conversely, suppose En P some N. Then En P N, and by a multivariate

version of Theorem 6.1 of Kallenberg (1975), the limit N must be

infinitely divisible. Furthermore, N has independent increments

. .
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an—additively null. And the right-hand side of (4.6) converges to zero
when there is a2 A > 0 such that

a t

sup E|Nn(t) - xant| < », lim E| 2 Pk = A ctI
n nso k=1

and Ednk and P, are an-additively null.

N (t)
Proof. First note that we can write N (t) = Xk -1 hin) and that Nn(t) is

an Fﬁn)— stopping time. Thus, parts (a) and (b) follow from Theorem 1 of

Serfozo (1985). To prove part (c), first note that for any real numbers

rnk’
Nn(t) (m+1)an
) r. < a In () sup | r..
k=1 °K m kema_ nk

Using this with the property Esup Un = sup EUn and Elpnk - pnkl <0

nk’
n n

one can see that the right-hand side of (4.5) is bounded by

-1 (m+1)an -2
4 ENn(t) sup 2 (Ednk + Pnk + 0nk)’
m k=man

and this converges to zero under the hypotheses of (c¢). A similar

argument shows that the right-hand side of (4.6) converges to zero; here

one uses
Nn(t) lNn(t) Aant
E] 3 p,-ct|]<E Y p,- 3 p.|
kel nk kel nk o1 nk
Aant

+ E| 21 p“k - ctl

(m+1)an
< Ean(t) - kant|sup 2 Pk + o(l).
m k-man

T
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Theorem 5.1. Suppose
D

(5.1) rl((“)/kn 1 for each k_ + , |
- n !

and
.u (5.2) €= a;lszp max{Dl((t;): L < Ml(‘n)} 20 as n * =,
o D * D

S, Then N > N if and only if N =+ N.
f Proof. First, suppose N > N. Clearly, for any j and s < ¢,

ll (n)

(5.3) N (s,t] = ZME 1x{® = pras < T8 <a 1)

. nj‘®’ £l Vke Di(as < Ty 2
s
[ <7 7 1x™ 2 Hreas <18 + 0™ <a (e + e
- K kL n k k2 n n
%=1
N j(s,t +e],
- and, similarly,
s
* (n) _ (n) (n)
(5.4) Nnj(s,t] > E z-z-l I(Xy, DNia (s + €) <T " +D 0 <at)

= Nnj(s + en,t] when s + € < t.

D D
One can show that En + N implies that (Nn (s,t + sn], Nn (s + en,t]) +>

J 3
(Nj(s,t], Nj(s,t]) for any s < t with Nj{s} = Nj{t} =0 a.s. This and
*

(5.3), (5.4) imply Nnj(s,t] Q Nj(s,t]. This reasoning readily

generalizes to yield g: + N.
: * D *
d Conversely, suppose En + N. Note that we can write Nnj(t) =

-1
] Moy (Ya(E)), where v (t):= a_ Xkr('rl((“) <at) and
(n)
v (n)

,, M o (t):= § ) I(X;," = NI(k <at), t >0, j=1,2,...
: nJ k=1 g1 <* n ’ "

AR )
[ .
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[
Since (5.1) implies that W where v(t) = t, it follows by Lemma 3.2

* D D
that En + N implies gn + N. Now, similarly, to (5.3) and (5.4),

~

M
n

j(s,t - en] < N“j(s,t] < Mnj(s - en,t], s<t-~- €,
D
Using this and gﬂ + N in an argument analogous to the preceding one
v
yields N+ N.
ﬁ“ ~
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